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1 Groups - An introduction

The presentation from the first lecture is available here.

1.1 Basic definitions and examples

(i) A group (G , ·) is a nonempty set G with a binary operation · satisfying the
properties:

(a) (Closure property) For any a,b ∈G , we have a ·b ∈G .

(b) (Associativity) For any a,b,c ∈G , we have

a · (b · c) = (a ·b) · c.

(c) (Existence of identity) There exists an element e ∈ g called the identity
element such that

a ·e = a = e ·a,

for any a ∈G .

(d) (Existence of inverse) For each a ∈G , there exists an a−1 ∈G such that

a ·a−1 = e = a−1 ·a.

(ii) In a group (G , ·) as above, the following properties hold:

(a) (Right cancellation law) For a,b,c ∈G , if a · c = b · c, then a = b.

(b) (Left cancellation law) For a,b,c ∈G , if c ·a = c ·b, then a = b.

(c) The identity e is unique.

(d) Every element a ∈G has a unique inverse a−1.

(iii) Examples of groups:

(a) For n ≥ 3, the Dihedral group D2n - the group of symmetries of a reg-
ular n-gon is a group comprising n reflections and and n rotations,
where the operation is composition (See presentation at the begin-
ning of Section 1).

(b) Additive groups: (Z,+), (Q,+), (R,+), (C,+), and

Mn(X ) = {(ai j )n×n |ai j ∈ X }, for X =Z,Q, R,C.
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(c) The group Cn = {e2πk/n : 0 ≤ k ≤ n −1} of complex nth roots of unity.
This is group can also be viewed as the group of rotations of a reg-
ular n-gon or the group of symmetries of a space of n equidistantly
marked point on a circle.

(d) For a fixed n ∈N, define a relation ∼ on Z by

x ∼ y ⇐⇒ n | x − y.

Then∼defines an equivalence relation onZwhose equivalnce classes
are denoted by

Z = {[0], [1], . . . , [n −1]}.

The set Zn forms a group under the operation

[x]+ [y] = [x + y].

This group is an additive version of the group described in (c).

(e) Multiplicative groups: (Q×, ·), (R×, ·), (C×, ·), and the general linear
group

GL(n, X ) = {A = (ai j )n×n |det(A) 6= 0}, for X =Q, R,C.

(f) The group of symmetries (or rigid motions) Sym(R2) of R2 has in-
finitely may elements, which fall into four broad types:

(a) Translation by a vector.

(b) Rotation about a point.

(c) Reflection about a line.

(d) Glide reflection about a line (i.e a reflection about a line followed
by a translation by a vector parallel to the line).

Symmetries of type (a) and (b) are said to be orientation-preserving,
as they do not flip the plane over), while symmetries of type (c) and
(d) are called orientation-reversing symmetries (see Figure 1 below).
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Figure 1: The symmetries of the plane.

(iv) Let (G , ·) be a group. A subset H ⊂ G is called a subgroup of G (written as
H <G), if (H , ·) is a group.

(v) Examples of subgroups.

(a) nZ<Z, for every n ∈Z.

(b) Mn(kZ) < Mn(Z), for every n ∈Z.

(c) Consider the special linear group

SL(n, X ) = {A = (ai j )n×n |det(A) = 1}, for X =Q, R,C.

Then SL(n, X ) < GL(n, X ).

(vi) Let G be a group. A subgroup H <G is said to be proper if H 6= {1} or G .

(vii) (The subgroup criterion). Let G be a group, and let H ⊂G . Then H <G if,
and only if, for every pair of elements g ,h ∈ H , the product g h−1 ∈ H . In
particular, if |G| <∞, then a subset H ⊂ G is a subgroup if, and only if, H
is closed under the operation in G .

(viii) A group G is said to be abelian if ab = ba, for all a,b ∈ G (i.e. if the group
operation is commutative).

(ix) Examples of abelian (or nonabelian) groups.

(a) All additive groups are abelian groups.
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(b) A vector space is an abelian group with respect to vector addition.

(c) The multiplicative groups (Q×, ·), (R×, ·), and (C×, ·) are abelian groups.

(d) The group D2n , for n ≥ 3, is non-abelian, as a reflection never com-
mutes with a rotation.

(e) The groups GL(n,F ) and SL(n,F ) are non-abelian groups, as matrix
multiplication is non-commutative.

1.2 Order of an element

(i) A groups (G , ·) is said to be finite, if G is a finite set. If G is not a finite group,
then G said to be a infinite group.

(ii) The order of a finite group (denoted by |G|) is the number of elements in
it.

(iii) Examples of finite and infinite groups.

(a) The groups Cn and Zn (|Cn | = |Zn | = n), and D2n (|D2n | = 2n) are finite
groups.

(b) The groupsZ, GL(n,F ), the symmetries of a circle, and the symmetries
of R2 are infinite groups.

(iv) The order of an element g ∈ G (denoted by o(g )) is the smallest positive
integer m such that g m = 1. If such an n does not exist for a g ∈G , then g
is said to be of infinite order.

(v) In a finite group, every element has finite order. However, an infinite can
have elements of finite order.

(vi) Let G be a group, and let g ∈G with o(g ) = n. If g m = 1, for some m. Then
n | m.

(vii) Let G be a group, and let g ∈G with o(g ) = n. Then

o(g k ) = n

gcd(k,n)
.

(viii) Examples of elements with finite and infinite orders.
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(a) In any group of symmetries, a reflection will always have order 2. For
example, in D2n , o(s) = 2, and the same holds for the reflexive symme-
tries of R2.

(b) In D2n , o(r k ) = n/gcd(k,n), for 0 ≤ k ≤ n −1.

(c) In Cn (resp. Zn), o(e i 2πk/n)(resp. o([k]) = n/gcd(k,n), for 0 ≤ k ≤ n−1.

1.3 Generating set for a group

(i) Let G be group and S ⊂G . Then S is a generating set for G (denoted by G =
〈S〉) if every element in G can be expressed as a finite product of powers of
elements in S and their inverses.

(ii) Examples of generating sets for groups.

(a) The group Z is generated by the sets {−1,1} and {1}.

(b) The group Cn is generated by {e i 2π/n}, while the group Zn is generated
by {[1]}.

(c) The group D2n is generated by a rotation r (by 2π/n) and a reflection
s. In fact, the elements of the group may be enumerated as:

D2n = {1,r,r 2, . . . ,r n−1, s, sr, sr 2, . . . , sr n−1},

where r and s satisfy the relation

sr k = r n−k s, for 0 ≤ k ≤ n −1.

(d) The group symmetries of R2 is not finitely generated.

1.4 Cyclic groups

(i) A group G is said to be cyclic, if there exists a g ∈G such that G = 〈{g }〉. In
other words, G is cyclic, if its generated by a single element in G .

(ii) Let G = 〈g 〉 be a cyclic group.

(a) If G is of order n (also denoted by Cn), then

G = {1, g , g 2, . . . , g n−1}.

This group is analogous (or isomorphic) to the groups Zn and Cn via
the association g i 7→ [i ].
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(b) If G is of infinite order, then

G = {1, g±1, g±2, . . .}.

This group is analogous (or isomorphic) to the group Z via the asso-
ciation g i 7→ i .

(iii) Every subgroup of a cyclic group is cyclic.

(iv) Let G = 〈g 〉 be a cyclic group.

(a) If o(g ) =∞, then every proper subgroup of G is of the form 〈g k〉, for
k ∈Z+ \ {1}.

(b) If o(g ) = n, then every proper subgroup of G is of the form 〈g n/d 〉,
where d is any proper divisor of n.

(v) Consider an element [k] ∈ Zn . Then the following statements are equiva-
lent.

(a) [k] generates Zn .

(b) gcd(k,n) = 1.

(c) o([k]) = n.

2 Cosets and the Lagrange’s Theorem

2.1 Cosets - Basic definitions and examples

(i) Let G be a group and H ≤G . Then a left coset of H in G is given by

g H = {g h |h ∈ H },

and a right coset of H in G is given by

H g = {hg |h ∈ H }.

(ii) Let G be a group, and let H <G . Then the following are equivalent:

(a) For x, y ∈G , xH = y H .

(b) For x, y ∈G , y−1x ∈ H .
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(c) For x, y ∈G , y−1xH = H .

(iii) Let G be a group and H ≤G . Then the relation ∼H on G defined by

x ∼H y ⇐⇒ y−1x ∈ H

is an equivalence relation. The set of equivalence classes G/ ∼H under this
relations are precisely the distinct left cosets of H in G . Hence, any two left
cosets of H in G are either identical or totally disjoint.

(iv) The set of all distinct left (resp. right) cosets of H in G is denoted by G/H
(resp. H\G).

(v) Examples of cosets.

(a) Z/nZ= {nZ,1+nZ, . . . , (n −1)+nZ}.

(b) D2n/〈r 〉 = {〈r 〉,D2n −〈r 〉}.

2.2 The Lagrange’s theorem

(i) There is bijective correspondence between any two distinct left cosets (or
right cosets) of H in G .

(ii) For any g ∈G , there is a bijective correspondence between the cosets g H
and H g−1. Consequently, there is a bijective correspondence between the
sets G/H and H\G .

(iii) Let G be a finite group, and let H <G . Then the index [G : H ] of H in G is
defined by

[G : H ] := |G/H | = |H\G|.

(iv) Lagrange’s Theorem: Let G be a finite group, and let H <G . Then

|G| = |H |[G : H ],

and consequently |H | | |G|.
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2.3 Applications of Lagrange’s Theorem

(i) Every group of prime order is cyclic.

(ii) Let G be a finite group with |G| = n, and let g ∈ G . Then o(g ) | n, and
consequently g n = 1.

(iii) The set Un = {[k] ∈ Zn | gcd(k,n) = 1} forms an abelian group under the
multiplication operation defined by [a][b] = [ab] called the multiplicative
group of integers modulo n.

(iv) Examples of multiplicative groups of integers.

(a) The group U8 = {[1], [3], [5], [7]} is a noncyclic group of order 2, as ev-
ery non-identity element is of order 2. In fact, every non-cyclic group
of order 4 is analogous to U8.

(b) The groups U5, U7, and U11 are cyclic. (In fact, it is known Un is cyclic
if and only if n = 2,4, pn , or 2pn , for some odd prime p. The proof of
this fact requires the Chinese Reminder Theorem.)

(v) The function φ :Z+ →Z+ defined by φ(n) = |Un | is called the Euler totient
function or the Euler φ-function. In particular, for a prime p, φ(p) = p −1.

(vi) Euler’s Theorem: If a and n are positive integers such that gcd(a,n) = 1,
then

aφ(n) ≡ 1 (mod n).

(vii) Fermat’s Little Theorem: If p is a prime number and a is a positive integer,
then

ap ≡ a (mod p).

(viii) Let G be a group. The set

Aut(G) := {ϕ : G →G |ϕ is an isomorphism}

forms a group under composition called the automorphism group of G .

(ix) Aut(Zn) ∼=Un .
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3 Normal subgroups and homomorphisms

3.1 Normal subgroups

(i) Let G be a group and H <G . Then H is said to be a normal subgroup of G
(denoted by H CG) if g N g−1 ⊂ N , for all g ∈G .

(ii) Examples of normal subgroups.

(a) Every subgroup of an abelian group is normal.

(1) Cn CC×, for n ≥ 2.

(2) mZCZ, for all m ∈Z
(b) SL(n,F )CGL(n,F ), for n ≥ 2.

(iii) The G be a group, and N < G . Then the following statements are equiva-
lent.

(a) N CG .

(b) g N g−1 = N , for all g ∈G .

(c) g N = N g , for all g ∈G .

(d) (g N )(hN ) = g hN , for all g ,h ∈G .

(iv) The G be a group, and N CG . Then G/N forms a group under the opera-
tion (g N )(hN ) = g hN .

(v) Let G be a group, and H <G such that [G : H ] = 2. Then H CG .

(vi) Let G be a group and H ,K <G . Then we define

HK = {hk : h ∈ H and k ∈ K }.

(vii) Let G be a group and H ,K <G . Then:

(a) HK <G if, and only if HK = K H .

(b) H ∩K <G .

(c) If H ,K are finite subgroups, then

|HK | = |H ||K |
|H ∩K | .

11



(viii) Let G be a group. The center Z(G) of G is defined by

Z (G) = {g ∈G : g h = hg , ∀h ∈ H }.

(ix) Let G be a group. Then Z (G)CG .

3.2 The group of quaternions

(i) Consider the set of 8 symbols

Q8 = {±1,±i ,± j ,±k},

with a product operation satisfying the following sets of relations:

(a) i 2 = j 2 = k2 =−1.

(b) i j = k, j k = i , ki = j .

(c) (−1)2 = 1.

These relations induce a binary operation on Q8 under which it forms a
non-abelian group called the group of quaternions. (Note that (b) may be
replaced with i j k =−1.)

(ii) The group Q8 has a unique subgroup of order 2 given by {±1}. Moreover,
as Z (Q8) = {±1}, it follows that {±1}CQ8.

(iii) The Q8 has three distinct subgroups of order 4, all of which are cyclic,
namely:

〈i 〉 = {±1,±i }, 〈 j 〉 = {±1,± j }, and 〈k〉 = {±1,±k}.

Furthermore, as all of these subgroups have index 2 in Q8, they are all nor-
mal in Q8.

(iv) The group Q8 differs in structure fromZ8 and D8 (or they are non-isomorphic
groups.)

3.3 Homomorphisms

(i) Let (G , ·) and (H ,∗) be groups. A function ϕ : G → H is said to be a homo-
morphism if

ϕ(g ·h) =ϕ(g )∗ϕ(h),

for all g ,h ∈G .
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(ii) Examples of homomorphisms:

(a) The trivial homomophism e : G → H given by e(x) = 1, for all x ∈G .

(b) The identity homomorphism i : G →G given by i (g ) = g , for all g ∈G .

(c) The map αn :Z→Z defined by αn(x) = nx.

(d) The map βn :Z→Zn defined by βn(x) = [x].

(e) The determinant map Det : GL(n,C) →C×.

(f) The map T : Mn(C) → Mn(C) defined by T (A) = Aᵀ.

(g) The pair of maps γ± : Mn(R) → Mn(R) defined by

γ±(A) = 1

2
(A± Aᵀ).

(h) The map ψ :R→C× defined by ψ(x) = e i x .

(iii) Let ϕ : G → H be a homomorphism.

(a) If ϕ is injective, then it is called a monomorphism (denoted by ϕ :
G ,→ H).

(b) If ϕ is surjective, then it is called an epimorphism.

(c) If ϕ is bijective, then it is called an isomorphism, and we say that G is
isomorphic to H, denoted by G ∼= H .

(iv) Let ϕ : G → H be a homomorphism. Then:

(a) ϕ(1) = 1.

(b) ϕ(g−1) =ϕ(g )−1, for all g ∈G .

(v) Let ϕ : G → H be a homomorphism. Then:

(a) The set Kerϕ= {g ∈G : ϕ(g ) = 1} is called the kernel of ϕ.

(b) The set Imϕ= {ϕ(g ) : g ∈G} is called the image of ϕ.

(vi) Let ϕ : G → H be a homomorphism. Then

(a) KerϕCG .

(b) Imϕ< H .
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(vii) Let ϕ : G → H be a homomorphism. Then the following statements are
equivalent:

(a) ϕ is a monomorphism.

(b) G ∼= Imϕ.

(c) Kerϕ= {1}.

If in addition we assume that G , H are finite, then the above statements
are equivalent to ϕ being order-preserving, that is, o(g ) = o(ϕ(g )), for all
g ∈G .

3.4 The Isomorphism Theorems

(i) Let G be a group, and N CG . Then the quotient map q : G →G/N given by
q(g ) = g N is an epimorphism.

(ii) First Isomorphism Theorem: Let G , H be groups, and ϕ : G → H is a ho-
momorphism. Then

G/Kerϕ∼= Imϕ.

In particular, if ϕ is onto, then

G/Kerϕ∼= H .

(iii) Implications of First isomorphism theorem.

(a) The map Det : GL(n,F ) → F× is an epimorphism whose kernel is given
by

Ker(Det) = {A ∈ GL(n,F ) : Det(A) = 1} = SL(n,F ).

Therefore, the First isomorphism theorem implies that

GL(n,F )/SL(n,F ) ∼= F×.

(b) For n ≥ 2, the map βn : Z→ Zn is an epimorphism whose kernel is
given by

Kerβn = {x ∈Z :βn(x) = [x] = [0]} = nZ.

Therefore, the First isomorphism Theorem implies that

Z/nZ∼=Zn .
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(c) The map

ϕ :R→ S1 = {z ∈C : |z| = 1} : x
ϕ7−→ e i 2πx

is an epimorphism whose kernel is given by

Kerϕ= {x ∈R :ϕ(x) = cos(2πx)+ i sin(2πx) = 1} =Z.

Therefore, the First isomorphism theorem implies that

R/Z∼= S1.

(iv) Let G be a group, H <G , and N CG . Then

(a) H ∩N CH .

(b) N CH N .

(v) Second Isomorphism Theorem: Let G be a group, H <G , and N CG . Then

H/H ∩N ∼= H N /N .

(vi) Third Isomorphism Theorem: Let G be group, and H ,K CG such that H <
K . Then

(G/H)/(K /H) ∼=G/K .

(vii) Some applications of the Third isomorphism theorem.

(a) For positive integers `,m,n such that m | ` and n | m, we know that

`ZCnZ,mZCnZ and `Z< mZ.

Therefore, the Third Isomorphism Theorem implies that

(nZ/`Z)/(mZ/`Z) ∼= nZ/mZ,

or equivalently, we have

Z`/n/Z`/m
∼=Zm/n .

(b) Consider the group D2n , when n is even and n ≥ 4. Then we know
that

〈r n/2〉CD2n ,〈r 〉CD2n , and 〈r n/2〉 < 〈r 〉.
Therefore, the Third isomorphism Theorem implies that

(D2n/〈r n/2〉)/(〈r 〉/〈r n/2〉) ∼= D2n/〈r n/2〉.

15



4 Direct products of groups

4.1 Basic properties

(i) Given two groups G and H , consider the cartesian product G × H with a
binary operation given by

(g1,h2)(g2,h2) = (g1g2,h1h2), for all g1, g2 ∈G and h1,h2 ∈ H .

Under this operation, the set G × H forms a group with identity element
(1,1) and the inverse of (g ,h) ∈ G × H is given by (g−1,h−1). The group
G × H is called the external direct product (or the direct product) of the
groups G and H .

(ii) The notion of a direct of two groups can be extended to define the direct
product of n groups Gi , 1 ≤ i ≤ n, denoted by

n∏
i=1

Gi =G1 ×G2 × . . .×Gn .

If in the product above each Gi = G , then the product is simply denoted
by Gn .

(iii) The groups G and H inject into the G×H , via the natural monomorphisms

G ,→G ×H : g 7→ (g ,1)

H ,→G ×H : h 7→ (1,h)

(iv) For any two groups G and H , the natural homomorphism

G ×H → H ×G : (g ,h) 7→ (h, g )

is an isomorphism, and hence we have that

G ×H ∼= H ×G .

In other words, up to isomorphism, the direct product of two groups is
commutative.
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(v) For any three groups G , H , and K , the natural homomorphism

(G ×H)×K → (G ×H)×K : ((g ,h),k) 7→ (g , (h,k))

is an isomorphism, and hence we have that

G × (H ×K ) ∼= (G ×H)×K .

In other words, up to isomorphism, the direct product of three groups is
associative.

4.2 Direct products of abelian groups

(i) A direct product
n∏

i=1
Gi of groups is abelian, if and only if, each component

group Gi is abelian.

(ii) Example of direct products that are abelian (or non-abelian).

(a) For any positive integer r , the group

Zr =Z× . . .×Z︸ ︷︷ ︸
r t i mes

is an abelian group.

(b) For positive integers n1, . . .nk , the group

Zn1 × . . .×Znk

is an abelian group.

(c) The direct product of D2m , for m ≥ 4, or Q8 with any abelian group
will yield a non-abelian group.

(iii) Let m,n ≥ 2 be positive integers. Then

Zm ×Zn
∼=Zmn

if and only is gcd(m,n) = 1.

(iv) Chinese Remainder Theorem: Let N be a positive integer such that N =
pr1

1 . . . prk
k , where the pi are distinct primes and the ri are positive integers.

Then
ZN

∼=Zp
r1
1
×Zp

r2
2
× . . .×Zp

rk
k

.
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(v) Examples of the Chinese Remainder Theorem.

(a) Z120
∼=Z3 ×Z5 ×Z8.

(b) For positive integers m,n ≥ 2, Znm �Zm
n .

(vi) Classification of finitely generated abelian groups: Every finitely gener-
ated abelian group is isomorphic to a group of the form

Zr ×Zp
r1
1
×Zp

r2
2
× . . .×Zp

rk
k

, (*)

where r and the ri ≥ 1 are positive integers, and the pi are (not necessarily
distinct) primes.

(vii) Let G be a finitely generated abelian group which has a direct product de-
composition of the form (*) above.

(a) The component Zr is the called free part, and the component Zp
r1
1
×

. . .×Zp
rk
k

is called the torsion part of the direct product decomposi-

tion of G .

(b) The integer r is called rank of G .

(viii) Examples of finitely generated abelian groups.

(a) Up to isomorphism, there are three abelian groups of order 8, namely

Z8, Z2 ×Z4, and Z3
2.

(b) Up to isomorphism, there is a unique abelian group of order 15, which
is

Z15
∼=Z3 ×Z5.

(c) In general, given distinct primes p1, . . . , pk , there exists a unique abelian
group of order p1p2 . . . pk up to isomorphism, which is Zp1p2...pk .

5 The symmetric group

5.1 Basic definitions and examples

(i) Let X be a nonempty set. Then the set of permutations (or self-bijections)
of X defined by

S(X ) := { f : X → X : f is a bijection}
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forms a group under composition called the symmetric group of X.

(ii) When |X | = n, without loss of generality, we take X = {1,2, . . . ,n}, and we
denote the group S(X ) simply by Sn . The group Sn , of order n!, is called
the symmetric group (or the permutation group) on n letters.

(iii) Examples of symmetric groups.

(a) S2
∼=Z2.

(b) S3
∼= D6.

(c) For n ≥ 4, Sn is a non-abelain group.

(iv) A typical element σ ∈ Sn is a bijection σ : {1,2, . . . ,n} → {1,2, . . . ,n}, so we
often denote such a σ by(

1 2 . . . n −1 n
σ(1) σ(2) . . . σ(n −1) σ(n)

)
To further simplify notation forσ, we only list the values ofσ on the subset
{i ∈ {1,2, . . . ,n} :σ(i ) 6= i }. For example, the permutation σ ∈ S5 given by(

1 2 3 4 5
2 3 1 4 5

)
is simply written as (

1 2 3
2 3 1

)
.

(v) A product σ1σ2 of two permutations σ1,σ2 ∈ Sn is defined as the permu-
tation(

1 2 . . . n −1 n
(σ1 ◦σ2)(1) (σ1 ◦σ2)(2) . . . (σ1 ◦σ2)(n −1) (σ1 ◦σ2)(n)

)
.

(vi) The support of a permutation σ ∈ Sn is defined by

supp(σ) := {i ∈ {1, . . . ,n} :σ(i ) 6= i }.

(vii) Two permutations σ1,σ2 ∈ Sn are said to be disjoint if

supp(σ1)∩ supp(σ2) =;.

(viii) Any two disjoint permutations in Sn commute.
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5.2 k-cycles

(i) A k-cycle in Sn is a permutation of the form(
i1 i2 . . . ik−1 ik

i2 i3 . . . ik i1

)
,

where 1 ≤ k ≤ n. A k-cycle as above is often denoted by

(i1 i2 . . . ik ).

A 2-cycle in Sn is a called a transposition (or an inversion).

(ii) Consider the k-cycle σ= (i1 i2 . . . ik ) in Sn . Then we have:

(a)
σ= (i1 σ(i1) σ2(i1) . . .σk−1(i1)), and

(b) o(σ) = k.

(iii) Example of k-cycles.

(a) The permutation (
1 2 3 4 5
2 3 1 4 5

)
∈ S5

is a 3-cycle given by (123).

(b) The permutation (
1 2 3 4
1 3 2 4

)
∈ S4

is a 2-cycle (transposition) given by (23).

(iv) Two cycles (i1 i2 . . . ik ), ( j1 j2 . . . j`) ∈ Sn commute if

{i1, . . . , ik }∩ { j1, . . . , j`} =;.

(v) Every k-cycle is a product of no less than k−1 transpositions. In particular,
for a k-cycle (i1 i2 . . . ik ) ∈ Sn , we have

(i1 i2 . . . ik ) = (i1 ik )(i1 ik−1) . . . (i1 i2).

(vi) Every permutation σ ∈ Sn can be expressed uniquely as a product of dis-
joint cycles. This is called the unique cycle decomposition of the permuta-
tion σ.
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5.3 Parity of a permutation

(i) Suppose that the unique cycle decomposition of a permutation σ ∈ Sn is
given by

σ=σ1σ2 . . .σkσ ,

where each σi is an mi -cycle. Then we define

N (σ) :=
kσ∑

i=1
(mi −1).

(ii) The sign (or parity) of a permutation σ ∈ Sn is defined by

sgn(σ) := (−1)N (σ).

(iii) Given a permutation σ ∈ Sn , consider the set

Xσ := {k ∈N :σ is a product of k transpositions.}

Then
sgn(σ) = (−1)k ,∀k ∈ Xσ.

Hence, alternatively, the parity of a permutation σ may also be defined as

sgn(σ) := (−1)k , for any k ∈ Xσ.

(iv) A permutation σ ∈ Sn is called an:

(a) even permutation, if sgn(σ) = 1.

(b) odd permutation, if sgn(σ) =−1.

(v) For n ≥ 2, the map

τ : Sn → {±1}(=Z2) :σ
τ7−→ sgn(σ)

is an epimorphism with Kerτ= An . Thus, we have

Sn/An
∼=Z2.

Consequently, An CSn and [Sn : An] = 2.
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5.4 Conjugacy classes of permutations

(i) Let G be a nontrivial group. Two elements g ,h ∈G are said to be conjugate
in G if there exists x ∈G such that g = xhx−1.

(ii) The relation ∼c on G given by

g ∼c h ⇐⇒ g and h are conjugate

defines an equivalence relation on G . Each equivalence class (denoted by
[g ]c ) induced by the relation ∼c is called a conjugacy class of G.

(iii) A partition of a positive integer n is a way of writing n as a sum of positive
integers, up to reordering of summands. For example, the partitions of 4
are:

(a) 1+1+1+1,

(b) 2+1+1,

(c) 3+1,

(d) 2+2, and

(e) 4.

(iv) Suppose that the unique cycle decomposition of a permutation σ ∈ Sn is
given by

σ=σ1σ2 . . .σkσ ,

where each σi is an mi -cycle. Then:

(a) o(σ) = lcm(m1,m2, . . . ,mkσ).

(b) As
kσ∑

i=1
mi = n, this decomposition induces a partition Pσ of the inte-

ger n.

(c) Given two permutations σ1,σ2 ∈ Sn ,

[σ1]c = [σ2]c ⇐⇒ Pσ1 = Pσ2 .

Consequently, the number of distinct conjugacy classes of Sn is pre-
cisely the number of partitions of n.
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6 Groups of symmetries

6.1 Regular representation and group actions

(i) Given a group G and any fixed g ∈G , the maps

ϕg : G →G : h
ϕg7−−→ g h, ∀h ∈G , and

ϕ′
g : G →G : h

ϕg7−−→ hg−1, ∀h ∈G

are bijections. Hence, ϕg ,ϕ′
g ∈ S(G).

(ii) A group G is said to imbed (or embed) in a group H if there exists a monomor-
phism G ,→ H .

(iii) Given a group G , the maps

ψG : G → S(G) : g
ψ7−→ϕg , and

ψ′
G : G → S(G) : g

ψ′
7−→ϕ′

g

are monomorphisms. Consequently, the group G imbeds in S(G) (or G ,→
S(G)). The monomorphismsψG (resp. ψ′

G ) are called the left regular (resp.
right regular) representations of the group G .

(iv) Let G be a finite group with |G| = n. Then G ,→ Sn (or G imbeds in Sn).

(v) A group G is a said to act on a set X 6= ; (denoted by G æ X ), if there exists
a homomorphism Φ : G → S(X ). If further, we assume that Φ is injective,
then the action G æ X is said to be faithful (or effective).

(vi) Examples of group actions.

(a) The group S(G) acts faithfully on group G via the identity map i :
S(G) → S(G).

(b) The group Aut(G) acts faithfully on group G via the inclusion map
Aut(G) ,→ S(G).

(c) A group G acts on itself (in symbols G æ G) faithfully via the left (or
the right) regular representation.
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(d) The group of symmetries Sym(R2) of R2 acts faithfully on R2 via the
inclusion map Sym(R2) ,→ S(R2).

(e) The group Zn acts faithfully on R2, as its isomorphic to each cyclic
subgroup of Sym(R2) generated by rotation about a fixed point by
2π/n radians. Analogously, the rotation of the unit circle S1 by 2π/m
induces a faithful action of Zm on S1.

(f) From Midterm, Q4, we now know that D2n acts faithfully on R2. As in
previous example, D2n also acts faithfully on S1.

(g) For a fixed g ∈G , the conjugation map

ϕc
g : G →G : h

ϕc
g7−−→ g hg−1, ∀h ∈G

is an isomorphism. The map

ψc
G : G → Aut(G)(< S(G)) : g

ψc
G7−−→ϕc

g , ∀g ∈G

defines an action of G on itself called the action by conjugation, which
we denote by G æc G . Further, we note that

Kerψc
G = {g ∈G : g hg−1 = h, ∀h ∈ H } = Z (G).

Consequently:

The action G æc G is faithful if, and only if, Z (G) is trivial.

(h) The group Sn acts faithfully on the set X = {1,2, . . . ,n} (or more gen-
erally any set of size n) via the isomorphism

Sn → S(X ) :σ 7→
(

1 2 . . . n
σ(1) σ(2) . . . σ(n)

)
, ∀σ ∈ Sn .

(i) For a fixed m ∈Z, the translation map

tm :R→R : x
tm7−→ x +m, ∀x ∈R

defines a bijection. Consequently, the map

Z→ S(R) : m 7→ tm , ∀m ∈Z
defines a faithful action of Z on R.
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(j) Generalizing the previous example, for a fixed (m,n) ∈Z2, the coordinate-
wise translation map

tm,n :R2 →R2 : (x, y)
tm7−→ (x +m, y +n), ∀(x, y) ∈R2

defines a bijection. Consequently, the map

Z2 → S(R2) : (m,n) 7→ tm,n , ∀(m,n) ∈Z2

defines a faithful action of Z2 on R2.

6.2 Symmetries of polyhedra

(i) A convex polyhedron (pl. polyhedra) is a solid formed by enclosing a por-
tion of 3-dimensional space with 4 or more plane polygons. For example,
cube, prisms and pyramids are polyhedra.

(ii) A polyhedron whose faces are identical (or congruent) regular polygons
is called a regular polyhedron. There are exactly five regular polyhedra,
namely, the cube, the tetrahedron, octahedron, dodecahedron, and the
icosahedron.

(iii) Two polyhedra are said to be duals of each other if the vertices of one cor-
respond to the faces of the other (and vice versa) and the edges between
pairs of vertices of one correspond to the edges between pairs of faces of
the other (and vice versa).

(iv) The edges of the dual of a regular polyhedron are constructed by joining
the centers of adjacent faces of the polyhedron. The cube and the octahe-
dron, and the dodecahedron and the icosahedron, are duals of each other.

(v) The collection of rotational symmetries Sym(P ) of a regular polyhedron P
forms a group under composition.

(vi) The group of a rotational symmetries of a polyhedron and its dual are iso-
morphic.

(vii) Rotational symmetries of the tetrahedron. The tetrahedron T4 has 4 ver-
tices, 6 edges, and 4 faces (see Figure 2 below), each of which is a equilat-
eral triangle.
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Figure 2: A tetrahedron.

The tetrahedron has exactly 12 rotational symmetries, which comprise:

• 1 trivial rotation or the identity symmetry,

• 8 non-trivial rotations (by 2π/3 and 4π/3 radians) about the 4 axes
joining vertices to the centers of opposite faces, and

• 3 non-trivial rotations (by π radians) about the 3 axes joining the
midpoints of opposite edges.

Labeling the vertices of T4 with numbers 1-4, we see each rotational sym-
metry r ∈ Sym(T4) induces a permutation of these vertices, and hence in-
duces a bijection σr ∈ S4 on the the set {1,2,3,4}. Moreover, we see that a
order 3 rotation induces a 3-cycle in S4, while a order 2 rotation induces a
product of two disjoint transpositions in S4. As every non-trivial rotation
induces an even permutation, the association

Sym(T4) → A4 : r 7→σr

is an isomorphism, or in other words,

Sym(T4) ∼= A4.

(viii) Rotational symmetries of the cube (and the octahedron.) The cube C
has 8 vertices, 12 edges, and 6 faces (see Figure 3 below), each of which is
a square.
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(a) A cube.

(b) An octahedron.

Figure 3: The cube and the octahedron are dual polyhedra.

The cube has exactly 24 rotational symmetries, which comprise:

• 1 trivial rotation or the identity symmetry,

• 9 non-trivial rotations (byπ/2, π and 3π/2 radians) about 3 axes join-
ing the centers of opposite faces,

• 8 non-trivial rotations (by 2π/3 and 4π/3 radians) about the 4 great
diagonals, and

• 4 non-trivial rotations (by π radians) about the 4 axes joining the
midpoints of opposite edges.

Any rotational symmetry of C maps a great diagonal to another great di-
agonal, and hence it induces a permutation of the set of great diagonals.
So we label the four distinct pairs of diagonally opposite vertices of C with
numbers 1-4. This labeling would the give the vertices in each face of C
the labels 1-4. Fixing any face in C , we see that each rotational symme-
try r ∈ Sym(C ) induces a permutation of vertices of that face, and hence
induces bijection σr ∈ S4 on the set {1,2,3,4}. Consequently, the map

Sym(C ) → S4 : r 7→σr

is an isomorphism, that is,

Sym(C ) ∼= S4.
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(ix) Rotational symmetries of the dodecahedron (and the icosahedron.) The
dodecahedron D has 20 vertices, 30 edges, and 12 faces (see Figure 4 be-
low), each of which is a regular pentagon.

(a) A dodechedron. (b) An icosahedron.

Figure 4: The dodecahedron and the icoshedron are dual polyhedra.

The icosahedron has exactly 60 rotational symmetries, which comprise:

• 1 trivial rotation or the identity symmetry,

• 24 non-trivial rotations (by 2πk/5 radians, for k = 2,3,4,5) about the
6 axes joining the centers of opposite faces, and

• 20 non-trivial rotations (by 2π/3 and 4π/3 radians) about the 10 great
diagonals, and

• 15 non-trivial rotations (by π radians) about the 15 axes joining the
midpoints of opposite edges.

Each pentagonal face of D has five diagonals. Note that there 5 distinct
cubes (labeled 1-5) that can be inscribed in D such that:

• the vertices of the cube are also vertices of D, and

• each cube intersects each face of D in exactly one diagonal (see Fig-
ure 5 below [1]).
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Figure 5: A cube inscribed in a dodecahedron.

Any rotational symmetry of r ∈ Sym(D) induces a permutation σr ∈ S5 of
these cubes. Further, we note that each permutation thus induced is an
even permutation. Consequently, the map

Sym(D) → A5 : r 7→σr

is an isomorphism, that is,

Sym(D) ∼= A5.

6.3 Real orthogonal groups

(i) The real orthogonal group in dimension n, denoted by O(n,R) is defined
by

O(n,R) := {A ∈ GL(n,R) : A Aᵀ = AᵀA = In}.

(ii) The determinant map

Det : O(n,R) →C2 = {±1} : A
Det7−−→ Det(A)

is an epimorphism. Moreover,

KerDet = {A ∈ O(n,R) : Det(A) = 1}

is a normal subgroup of index 2 called the special real orthogonal group,
and is denoted by SO(n,R).
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(iii) Any matrix in SO(2,R) has the form

Aθ :=
[

cosθ sinθ
−sinθ cosθ

]
, where θ ∈R.

Consequently, the map

SO(2,R) → S1 : Aθ 7→ e iθ

is an isomorphism, and so we have

SO(2,R) ∼= S1.

(iv) Consider a matrix A ∈ GL(n,R). Then the following statements are equiv-
alent.

(a) A ∈ O(n,R).

(b) A preserves dot product of vectors, that is,

AX · AY = X ·Y , ∀X ,Y ∈Rn .

(c) The columns of A are mutually orthogonal.

(v) Let f : Rn → Rn be a bijective map (i.e. f ∈ S(Rn)). Then f is said to be an
isometry (or a rigid motion) of Rn if

‖X −Y ‖ = ‖ f (X )− f (Y )‖, ∀X ,Y ∈Rn .

(vi) The group Sym(Rn) of isometries (or rigid motions) of Rn is defined by

Sym(Rn) := { f ∈ S(Rn) : f is an isometry.}.

(vii) Let f ∈ S(Rn) be a bijection. Then the following statements are equivalent.

(a) f ∈ Sym(Rn) with f (0) = 0, where 0 ∈Rn denotes the zero vector.

(b) f preserves dot product of vectors, that is,

f (X ) · f (Y ) = X ·Y , ∀X ,Y ∈Rn .

(c) There exists A ∈ O(n,R) such that f (X ) = AX , for all X ∈Rn .
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(viii) Given m ∈ Sym(Rn), there exists A ∈ O(n,R) and a vector B ∈Rn such that

m(X ) = AX +B , ∀X ∈Rn .

In other words, every rigid motion ofRn is the composition of a orthogonal
linear operator with a translation.

(ix) The group of rotations of R2 (resp. R3) about the origin is isomorphic to
SO(2,R) (resp. SO(3,R)).

(x) A matrix A ∈ O(n,R) is said to be orientation-preserving, if Det(A) = 1, and
orientation-reversing, if Det(A) =−1.

(xi) The rotations of R2 and R3 are orientation-preserving rigid motions which
fix the origin.

(xii) Any finite subgroup of O(2,R) is isomorphic to either Zn , for n ≥ 1, or D2n ,
for n ≥ 2.

(xiii) Any finite subgroup of SO(3,R) is isomorphic to precisely one of the fol-
lowing groups.

(a) Cn , n ≥ 1, the group of rotational symmetries of an n-pyramid (see
Figure 6 below).

Figure 6: A pentagonal pyramid.

(b) D2n , n ≥ 1 the group of rotational symmetries of an n-prism (see Fig-
ure 7 below).
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Figure 7: A 3-prism.

(c) A4, the group of rotational symmetries of a tetrahedron.

(d) S4, the group of symmetries of a cube or a octahedron.

(e) A5, the group of symmetries of a dodecahedron or a icosahedron.
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